
Mkuser - or how we keep the usernames straight

Gretchen Phillips - SUNY@Buffalo
Ken Smith - SUNY@Buffalo

June 1989

1. Introduction

The State University of New York at Buffalo has an ever growing Unix based
computing environment. The primary instructional Unix machines now include a VAX
11/785 and a Sperry 7000/40 both running Berkeley 4.3, as well as an Encore Multimax
running Umax 4.2 Release 3.3. Additionally, Sun workstations now proliferate on the
campus. Administration of any number of Unix machines becomes a headache when
username administration comes into the picture. Additionally, with NFS filesystems,
users must have consistent uids along with usernames (where consistency is for the
convenience of the user).

The total number of unique usernames in the timesharing environment is over 1200
and workstation accounts number about 500. When Unix timesharing was the primary
location for users, and system administration had only one point, management of
usernames and uids was relatively straightforward. Initially, a simple c-shell script was
sufficient for adding users (when we had only one machine). This grew to a C program
that could take a batch file for processing instructional accounts and would check
existence of duplicate usernames and uids on the other timesharing hosts. This system
fell apart when workstations began to proliferate on the campus. There was more than
one point for system administration; individual departments or schools hired system
administrators, individual workstation owners could add and delete users, and although
cooperation was desired, no tool was available to maintain usernames over the entire
network in a consistent fashion. To this end, we developed our newest incantation of
mkuser. It has a daemon uid and username server and database manipulator, as well as a
client program for manipulating appropriate system and user files on hosts throughout the
network.

2. Philosophy of mkuser

The philosophy of usernames, in general, isn’t a complicated thing. People need a
method of access to resources and some place to store their work. Managing this can be
as simple as one username where everyone shares, cooperates and never makes a
mistake, or as complicated as one (or more) username for each user. We settled on one
username per user. Later, we additionally settled on one uid per user.

The original script we used for making users was simplistic at best and dangerous at
worst. It simply prompted for necessary passwd fields, did some minimal checks and
appended to /etc/passwd. The growth of our environment and expansion from one where



users were concentrated on a single machine to users spread over four machines (or
more), meant that we had to come up with a more sophisticated method for maintaining
accounts. Additionally, at the beginning of a semester it could be the case that three
hundred new accounts needed to be created. Needless to say, this was an ugly task.

We dev eloped a C program that would prompt for necessary information in an
interactive fashion or read a batch file for massive account additions. One essential
feature that we added was to have it check for username duplication on the other
timesharing hosts. This was possible because all system administration was handled by a
limited number of trusted people and the hosts were equivalenced. The reasons for this
feature were two fold. It would be a bad thing if two different people ended up with the
same username. It would be inconvenient if a single person ended up with two different
usernames.

With the additional constraint of a consistent unified uid base and the proliferation
of Sun workstations and system administrators on campus, we decided that we must
develop some type of uid/username server. With this tool any person who generated a
username could be confident that neither the username nor the uid conflicted with another
on the network (either within a sub-domain or between domains). It is especially critical
within a domain for the purposes of mail delivery when a domain spans several machines.
The incantation became mkuserd (the server) and mkuser (the client).

3. Overview

The mkuser and mkuserd programs are basically straightforward. The client, mkuser
collects information from the system administrator. This information can come from
interactive or batch input. It then makes requests to the daemon, mkuserd, based on this
information. mkuserd in turn responds to transaction requests and sends appropriate
information back to the client. mkuser then uses this information in creating new
accounts. Additionally, mkuserd stores information about the user in a centralized
database.

4. mkuserd

The mkuserd program runs on one of our timesharing machines. It is the core of this
network implementation. The functions of mkuserd include:

• determining if the user has an existing account
• determining if a username is in use
• providing unique uids
• collecting password files from client machines and updating data base
• maintaining useful information about the user

mkuserd can be described as an transaction processor. It takes transaction requests from
mkuser clients, processes them and returns some information. If a client supplies a user



identifier, then if that unique identifier has a username associated with it, mkuserd will
return the username and uid. If no username is associated with that unique identifier,
mkuserd returns a null string indicating no username exists. If a client supplies a
username, then mkuserd will determine if that username is in use. If it is, then mkuserd
returns the full name of the user associated with it. Finally, mkuserd will return an
unused uid when requested.

Access to this information is provided through hash tables based on username and
unique identifier. This allows efficient access to the data through the two primary key
areas. Unused uids are stored in a array and supplied to client programs as uid
transaction requests are made.

4.1. mkuserd database

mkuserd keeps information on all accounts that are created and in fact all accounts
in the client password files. In particular it keeps records that include:

• username
• user-id
• group-id
• unique identifier for each user
• user’s full name
• department information
• expiration date
• machine name(s) where user has account

Whenever a mkuser client connects to mkuserd, mkuserd requests a copy of the current
/etc/passwd file from the client host. It uses this information to update any account and
uid information that may have been inserted or deleted "by hand" and reminds the mkuser
client that additions should be done only by mkuser. With current password files,
mkuserd keeps its internal database up to date. It checks that uids still have the same
value that exist in the database. If inconsistencies are found, then it sends an
informational message back to the client. The local system administrator is responsible
for making the appropriate changes based on the messages sent by mkuserd.

4.2. mkuserd security

Security of the data is provided by assuring that the connection between server and
client is run on a privileged port. This prevents random users from connecting to the port
and obtaining any potentially sensitive data. Additionally, the transmission of the unique
identifier is uni-directional. The client sends this to the server but the server never sends
it back. This prevents data from being transmitted should the port be compromised.

4.3. mkuserd problems

mkuserd has some faults. It is a memory pig. Since mkuserd runs on a single host, if
the host is inaccessible, then mkuser cannot be used to generate accounts. It is, however,
possible to move the database and mkuserd to another host and then reconfigure client
configuration files to know the new location of the server without recompiling the client



or server programs.

5. mkuser clients

The mkuser client program takes input describing users and connects to mkuserd.
mkuser makes transaction requests from mkuserd and uses this information to create local
accounts. It creates password file entries and home directories based on the username,
uid and gid provided by mkuserd, as well as information stored in a local configuration
file. The input to mkuser can be either interactive or batch. Typically, batch files are
created from student registration data where student identifier, full name, course
registration and university standing are recorded. These files are processed by mkuser
and unique identifiers are passed to mkuserd. If that identifier is present in the database,
the username is returned to mkuser. If no account exists, mkuser generates a username
and then asks mkuserd to verify the uniqueness of it. Upon verification of uniqueness of
the username, mkuser requests a uid from mkuserd for the username.

5.1. username generation

The generation of usernames on other SUNY@Buffalo machines (VMS and CMS)
is based on the unique identifier. This results in usernames of the type v117fpl4 and
c999il1t. We hoped to be more generous in our generation of usernames and settled on
an algorithm of selecting the first unused username generated based on a combination of
the first name, middle initial and last name of the user. This can be overridden with a
runtime flag in the interactive mode that will prevent the mkuser client from generating a
username and will instead prompt for one. This is especially handy when mkuser cannot
generate a unique username using this algorithm and the system administrator must
generate the name using one of those human brain based algorithms.

5.2. mkuser configuration

mkuser consults a local configuration file. Local system parameters, established by
the system administrator, are stored in the mkuser configuration file. The configuration
file is stored in /usr/local/adm/mkuser/mkuserd.conf. Configuration parameters stored
here include:

• location of the server
• username prefix
• home directory location
• quota limits

These variables include the location of home directory and quota values. These are based
on groups established by the system administrator. This permits mkuser parameters to be
set by the local administrator. For example, one administrator may have all home
directories in a flat directory, say /users, while another may choose to segregate into
/users/faculty and /users/student. Default quota values can be set for different groups or
invocations of mkuser. Local administrators can supply configuration parameters to the



username generation algorithm so that usernames can be generated with a departmental
prefix. The prefix was not part of the original username generation scheme but was a
compromise for those departments who wish to have some distinction among groups of
users based on username.

Parameters are read at runtime so they may be changed as the system administrator
deems necessary. This is handy when partitions get full and new users need to have home
directories in different partitions.

5.3. mkuser expiration

In addition to adding users to a system, mkuser can be used to expire users. A
runtime flag specifies that it is a expiration run, rather than addition and usernames are
expired from the password file. Expiration dates are stored in the data base. An
expiration run will deactivate all accounts that have passed their expiration date. This
feature is critical in our environment where there are well defined boundaries on account
activity. Expiration dates are only checked on an expiration run so accounts are only
removed at the request of the administrator.

6. Conclusion

This system does not completely free system administrators of account
administration. System administrators still have the responsibility of correcting any
problems in their /etc/passwd files. They must still obtain registration lists to feed to the
mkuser client. They must still run mkuser for adding accounts. It does relieve them (or
some campus wide administrator) from having to maintain a list of available uids. It does
relieve them of having to check to see if a user has an existing account. It does relieve
them (for the most part) of having to use some algorithm in their brain for generating
usernames. Finally, it does offer some method for expiring accounts based on expiration
dates. In the overall view, mkuser and mkuserd can make the administration of a
distributed environment, by a group of distributed administrators, a less frustrating task.


